Фрактальные изображения — Это невероятно, красиво и фантастично!

Сегодня человек живет в мире, где информация имеет огромное значение. Жизненно важно научится правильно с ней работать и использовать различные инструменты для этой работы. Одним из таких инструментов является компьютер, который стал универсальным помощником человеку в различных сферах деятельности. Современные математические модели настолько красивы и загадочны, что запросто могут свести с ума впечатлительного студента и учёного. Разноцветные изображения фракталов поражают своей современной гармонией. Поэтому вы смело можете повесить картину фрактала дома на стену и разыграть своих домочадцев сказать, что эта работа известного художника, и вы купили её за бешеные деньги на супермодной выставке современного авангардизма.

Фракталы замечательны тем, что многие из них удивительно похожи на то, что мы встречаем в природе. Снежинку, морского конька, ветви деревьев, разряд молнии и горные массивы можно нарисовать, используя фракталы. Поэтому многие современные учёные говорят о том, что природа имеет свойство фрактальности. Без преувеличения можно сказать, что соавтором открытия Мандельброта является компьютер. Чтобы нарисовать фрактал, нужно произвести большое количество вычислений, а найденные точки изобразить на графике. Делать это вручную крайне утомительно, а вот компьютер отлично справляется с этой задачей. С появлением компьютерной графики изменился и сам подход к исследованию в точных науках. Если раньше учёным приходилось иметь дело, в основном, с числами и формулами, то теперь их работа стала гораздо интереснее. С помощью компьютеров они могут рисовать большие красивые картинки изучаемых явлений. Некоторые из учёных так увлеклись этим, что стали художниками, и сегодня выставки фрактальной живописи проходят по всему миру. 

 

Так что же такое фрактал?

Фракталы — это геометрические объекты с удивительными свойствами: любая часть фрактала содержит его уменьшенное изображение. То есть, сколько фрактал не увеличивай, из любой его части на вас будет смотреть его уменьшенная копия. 

Первые идеи фрактальной геометрии возникли в 19 веке. А что же такое фрактальная графика? Среди всех картинок, которые может создавать компьютер, лишь немногие могут поспорить с фрактальными изображениями, когда идет речь о подлинной красоте. У большинства из нас слово «фрактал» вызывает в памяти цветные завитушки, формирующие сложный, тонкий и составной узор. Но на самом деле этот термин имеет гораздо более широкий смысл. Фрактал — объект, обладающий бесконечной сложностью, позволяющий рассмотреть столько же своих деталей вблизи, как и издалека. 

Земля — классический пример фрактального объекта. Из космоса она выглядит как шаp. Если приближаться к ней, мы обнаружим океаны, континенты, побережья и цепи гор. Будем рассматривать горы ближе — станут видны еще более мелкие детали: кусочек земли на поверхности горы в своем масштабе столь же сложный и неровный, как сама гора. И даже еще более сильное увеличение покажет крошечные частички грунта, каждая из которых сама является фрактальным объектом. Компьютеры дают возможность строить модели таких бесконечно детализированных структур. 

Есть много методов создания фрактальных изображений на компьютере. Два профессора математики из Технологического института штата Джоржия разработали широко используемый метод, известный как Системы Итерируемых Функций (СИФ). С помощью этого метода создаются реалистичные изображения природных объектов, таких, например, как листья папоротника, деревья, при этом неоднократно применяются преобразования, которые двигают, изменяют в размере и вращают части изображения. В СИФ используется самоподобие, которое есть у творений природы, и объект моделируется как композиция множества мельчайших копий самого себя. 

Фрактальные изображения с многоцветными завитушками относятся обычно к разряду так называемых фракталов с временным порогом, которые изображаются точками на комплексной плоскости с цветами, отражающими время, требуемое для того, чтобы орбита данной точки перешла («перебежала») определенную границу. Комплексная плоскость — как координатная плоскость с осями x и y. По паре координат точка строится на комплексной плоскости так же, как и точка на плоскости Oxy, но числа имеют другой, необычный смысл: они обладают мнимой компонентой, называемой i, которая равна квадратному корню из -1. ( Вот почему i — мнимая единица — в действительности корень из -1 не существует.) Это искажает обычные правила математики, так что такие общепринятые операции как умножение двух чисел, дают необычные результаты. 

Наиболее известный фрактал, множество Мандельброта — фрактал с временным порогом. Для каждой точки на экране компьютер считает координаты серии точек, определяющих мнимый путь, называемый орбитой. Точки, чьи орбиты никогда не выходят за пределы мнимого цилиндра, расположенного в начале координат комплексной плоскости, считаются элементами множества Мандельброта и обычно закрашиваются черным. Точки, чьи орбиты выходят за пределы цилиндра, раскрашиваются в соответствии с быстротой «убегания»: пикселя, чья орбита покидает цилиндр, например, на шестой итерации, можно раскрасить голубым, a тот — орбите которого требуется для этого семь итераций — красным. В результате на изображении получим множество Мандельброта и его окружение с «нестабильными» областями фрактала — областями, для которых малые изменения формулы ведут к большой разнице в орбитальном поведении. Это характеризуется густотой закраски рисунка. Меняя формулу для подсчета орбит, получим другие, такие же экзотические фракталы с временным порогом. 

Бесконечно детализированная структура множества Мандельброта становится «ясной», когда вы увеличиваете произвольную область. Неважно, сколь маленький участок вы рассматриваете: рисунок, который вы увидите, будет одинаково сложным. Почему? Потому что в двумерной плоскости, на которой строится множество Мандельброта, любая область содержит бесконечное число точек. Когда вы выбираете область для отображения, компьютер точкам из области ставит в соответствие точки на экране. И каждая точка, выбранная как угодно близко к другой, имеет свою характеристическую орбиту, порождающую соответствующий цветовой узор. 

Фракталы — не только предмет математического любопытства, они имеют полезные приложения. Фрактальные пейзажи, например, использовались как декорации в научно-фантастических фильмах, например в «Звёздный путь». СИФ-фракталы используются для сжатия изображений, и фрактальный метод часто дает лучшие результаты при многократном сжатии чем JPEG и другие методы сжатия, с малыми потерями качества изображения. Фракталы с временным порогом используются для моделирования поведения хаотических динамических систем (систем, в которых небольшие изменения входных данных влекут за собой большие изменения в выходе) таких, как поведение погоды.

Позвольте вас немного познакомить с фрактальным рисунком:


Согласитесь выглядит эффектно!

Но ещё более невероятно выглядят сделанные в 3D фрактальные пейзажи:

Вот такая вот неземнная красота.

 

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *